# set data directory dfs.data.dir=../data # set result directory # recommender result will output in this folder dfs.result.dir=../result # set log directory dfs.log.dir=../log # convertor # load data and splitting data # into two (or three) set # setting dataset name data.input.path=filmtrust # setting dataset format(UIR, UIRT) data.column.format=UIR # setting method of split data # value can be ratio, loocv, given, KCV data.model.splitter=ratio #data.splitter.cv.number=5 # using rating to split dataset data.splitter.ratio=rating # filmtrust dataset is saved by text # text, arff is accepted data.model.format=text # the ratio of trainset # this value should in (0,1) data.splitter.trainset.ratio=0.8 # Detailed configuration of loocv, given, KCV # is written in User Guide # set the random seed for reproducing the results (split data, init parameters and other methods using random) # default is set 1l # if do not set ,just use System.currentTimeMillis() as the seed and could not reproduce the results. rec.random.seed=1 # binarize threshold mainly used in ranking # -1.0 - maxRate, binarize rate into -1.0 and 1.0 # binThold = -1.0, do nothing # binThold = value, rating > value is changed to 1.0 other is 0.0, mainly used in ranking # for PGM 0.0 maybe a better choose data.convert.binarize.threshold=-1.0 # evaluation the result or not rec.eval.enable=true # specifies evaluators # rec.eval.classes=auc,precision,recall... # if rec.eval.class is blank # every evaluator will be calculated # rec.eval.classes=auc,precision,recall # evaluator value set is written in User Guide # if this algorithm is ranking only true or false rec.recommender.isranking=false #can use user,item,social similarity, default value is user, maximum values:user,item,social #rec.recommender.similarities=user
为了保证每次生成的结果是可以复现的, 随机数字的初始值通过配置项rec.ramdom.seed
来设置 示例配置如下:
rec.random.seed=1java示例代码如下
conf.set("rec.random.seed","1");verbose
对于部分推荐算法, 可以选择将每次迭代的学习情况打印输出. 涉及到的配置项为rec.recommender.verbose
. 示例配置如下:
rec.recommender.verbose=truejava示例代码如下:
conf.set("rec.recommender.verbose","true")