# set data directory |
dfs.data.dir=../data |
# set result directory |
# recommender result will output in this folder |
dfs.result.dir=../result |
# set log directory |
dfs.log.dir=../log |
# convertor |
# load data and splitting data |
# into two (or three) set |
# setting dataset name |
data.input.path=filmtrust |
# setting dataset format(UIR, UIRT) |
data.column.format=UIR |
# setting method of split data |
# value can be ratio, loocv, given, KCV |
data.model.splitter=ratio |
#data.splitter.cv.number=5 |
# using rating to split dataset |
data.splitter.ratio=rating |
# filmtrust dataset is saved by text |
# text, arff is accepted |
data.model.format=text |
# the ratio of trainset |
# this value should in (0,1) |
data.splitter.trainset.ratio=0.8 |
# Detailed configuration of loocv, given, KCV |
# is written in User Guide |
# set the random seed for reproducing the results (split data, init parameters and other methods using random) |
# default is set 1l |
# if do not set ,just use System.currentTimeMillis() as the seed and could not reproduce the results. |
rec.random.seed=1 |
# binarize threshold mainly used in ranking |
# -1.0 - maxRate, binarize rate into -1.0 and 1.0 |
# binThold = -1.0, do nothing |
# binThold = value, rating > value is changed to 1.0 other is 0.0, mainly used in ranking |
# for PGM 0.0 maybe a better choose |
data.convert.binarize.threshold=-1.0 |
# evaluation the result or not |
rec.eval.enable=true |
# specifies evaluators |
# rec.eval.classes=auc,precision,recall... |
# if rec.eval.class is blank |
# every evaluator will be calculated |
# rec.eval.classes=auc,precision,recall |
# evaluator value set is written in User Guide |
# if this algorithm is ranking only true or false |
rec.recommender.isranking=false |
#can use user,item,social similarity, default value is user, maximum values:user,item,social |
#rec.recommender.similarities=user |
为了保证每次生成的结果是可以复现的, 随机数字的初始值通过配置项rec.ramdom.seed
来设置 示例配置如下:
rec.random.seed=1 |
conf.set("rec.random.seed","1"); |
对于部分推荐算法, 可以选择将每次迭代的学习情况打印输出. 涉及到的配置项为rec.recommender.verbose
. 示例配置如下:
rec.recommender.verbose=true |
conf.set("rec.recommender.verbose","true") |