框架集合由搜索查询选择的所有数据。框架中包含许多构建块,有助于构建复杂的数据描述或摘要。聚合的基本结构如下所示
"aggregations" : { "<aggregation_name>" : { "<aggregation_type>" : { <aggregation_body> } [,"meta" : { [<meta_data_body>] } ]? [,"aggregations" : { [<sub_aggregation>]+ } ]? } }
有以下不同类型的聚合,每个都有自己的目的 -
这些聚合有助于从聚合文档的字段值计算矩阵,并且某些值可以从脚本生成。
数字矩阵或者是平均聚合的单值,或者是像stats
一样的多值。
此聚合用于获取聚合文档中存在的任何数字字段的平均值。 例如
POST http://localhost:9200/schools/_search请求正文
{ "aggs":{ "avg_fees":{"avg":{"field":"fees"}} } }响应
{ "took":44, "timed_out":false, "_shards":{"total":5, "successful":5, "failed":0}, "hits":{ "total":3, "max_score":1.0, "hits":[ { "_index":"schools", "_type":"school", "_id":"2", "_score":1.0, "_source":{ "name":"Saint Paul School", "description":"ICSE Affiliation", "street":"Dawarka", "city":"Delhi", "state":"Delhi", "zip":"110075", "location":[28.5733056, 77.0122136], "fees":5000, "tags":["Good Faculty", "Great Sports"], "rating":"4.5" } }, { "_index":"schools", "_type":"school", "_id":"1", "_score":1.0, "_source":{ "name":"Central School", "description":"CBSE Affiliation", "street":"Nagan", "city":"paprola", "state":"HP", "zip":"176115", "location":[31.8955385, 76.8380405], "fees":2200, "tags":["Senior Secondary", "beautiful campus"], "rating":"3.3" } }, { "_index":"schools", "_type":"school", "_id":"3", "_score":1.0, "_source":{ "name":"Crescent School", "description":"State Board Affiliation", "street":"Tonk Road", "city":"Jaipur", "state":"RJ", "zip":"176114", "location":[26.8535922, 75.7923988], "fees":2500, "tags":["Well equipped labs"], "rating":"4.5" } } ] }, "aggregations":{"avg_fees":{"value":3233.3333333333335}} }如果该值不存在于一个或多个聚合文档中,则默认情况下将忽略该值。您可以在聚合中添加缺少的字段,将缺少值视为默认值。
{ "aggs":{ "avg_fees":{ "avg":{ "field":"fees" "missing":0 } } } }基数聚合
此聚合给出特定字段的不同值的计数。 例如
POST http://localhost:9200/schools*/_search请求正文
{ "aggs":{ "distinct_name_count":{"cardinality":{"field":"name"}} } }响应
{ "name":"Government School", "description":"State Board Afiliation", "street":"Hinjewadi", "city":"Pune", "state":"MH", "zip":"411057", "location":[18.599752, 73.6821995], "fees":500, "tags":["Great Sports"], "rating":"4" }, { "_index":"schools_gov", "_type": "school", "_id":"1", "_score":1.0, "_source":{ "name":"Model School", "description":"CBSE Affiliation", "street":"silk city", "city":"Hyderabad", "state":"AP", "zip":"500030", "location":[17.3903703, 78.4752129], "fees":700, "tags":["Senior Secondary", "beautiful campus"], "rating":"3" } }, "aggregations":{"disticnt_name_count":{"value":3}}注 - 基数的值为
3
,因为名称 - Government, School 和 Model中有三个不同的值。
此聚合生成聚合文档中特定数字字段的所有统计信息。 例如
POST http://localhost:9200/schools/school/_search请求正文
{ "aggs" : { "fees_stats" : { "extended_stats" : { "field" : "fees" } } } }响应
{ "aggregations":{ "fees_stats":{ "count":3, "min":2200.0, "max":5000.0, "avg":3233.3333333333335, "sum":9700.0, "sum_of_squares":3.609E7, "variance":1575555.555555556, "std_deviation":1255.2113589175156, "std_deviation_bounds":{ "upper":5743.756051168364, "lower":722.9106154983024 } } } }最大聚合
此聚合查找聚合文档中特定数字字段的最大值。 例如
POST http://localhost:9200/schools*/_search请求正文
{ "aggs" : { "max_fees" : { "max" : { "field" : "fees" } } } }响应
{ aggregations":{"max_fees":{"value":5000.0}} }最小聚合
此聚合查找聚合文档中特定数字字段的最小值。 例如
POST http://localhost:9200/schools*/_search请求正文
{ "aggs" : { "min_fees" : { "min" : { "field" : "fees" } } } }响应
"aggregations":{"min_fees":{"value":500.0}}总和聚合
此聚合计算聚合文档中特定数字字段的总和。 例如
POST http://localhost:9200/schools*/_search请求正文
{ "aggs" : { "total_fees" : { "sum" : { "field" : "fees" } } } }响应
"aggregations":{"total_fees":{"value":10900.0}}在特殊情况下使用的一些其他度量聚合,例如地理边界聚集和用于地理位置的地理中心聚集。
这些聚合包含用于具有标准的不同类型的桶聚合,该标准确定文档是否属于某一个桶。桶聚合已经在下面描述 -
子聚集
此存储桶聚合会生成映射到父存储桶的文档集合。类型参数用于定义父索引。 例如,我们有一个品牌及其不同的模型,然后模型类型将有以下_parent
字段
{ "model" : { "_parent" : { "type" : "brand" } } }
还有许多其他特殊的桶聚合,这在许多其他情况下是有用的,它们分别是 -
可以通过使用元标记在请求时添加关于聚合的一些数据,并可以获得响应。 例如
POST http://localhost:9200/school*/report/_search请求正文
{ "aggs" : { "min_fees" : { "avg" : { "field" : "fees" } , "meta" :{ "dsc" :"Lowest Fees" } } } }响应
{ "aggregations":{"min_fees":{"meta":{"dsc":"Lowest Fees"}, "value":2180.0}} }