GROUP BY 语句用于结合聚合函数,根据一个或多个列对结果集进行分组。
SELECT column_name, aggregate_function(column_name) FROM table_name WHERE column_name operator value GROUP BY column_name;
在本教程中,我们将使用 web3 样本数据库。
下面是选自 "Websites" 表的数据:
+----+--------------+---------------------------+-------+---------+ | id | name | url | alexa | country | +----+--------------+---------------------------+-------+---------+ | 1 | Google | https://www.google.cm/ | 1 | USA | | 2 | 淘宝 | https://www.taobao.com/ | 13 | CN | | 3 | 芝麻教程 | http://www.web3.xin/ | 4689 | CN | | 4 | 微博 | http://weibo.com/ | 20 | CN | | 5 | Facebook | https://www.facebook.com/ | 3 | USA | | 7 | stackoverflow | http://stackoverflow.com/ | 0 | IND | +----+---------------+---------------------------+-------+---------+
下面是 "access_log" 网站访问记录表的数据:
mysql> SELECT * FROM access_log; +-----+---------+-------+------------+ | aid | site_id | count | date | +-----+---------+-------+------------+ | 1 | 1 | 45 | 2016-05-10 | | 2 | 3 | 100 | 2016-05-13 | | 3 | 1 | 230 | 2016-05-14 | | 4 | 2 | 10 | 2016-05-14 | | 5 | 5 | 205 | 2016-05-14 | | 6 | 4 | 13 | 2016-05-15 | | 7 | 3 | 220 | 2016-05-15 | | 8 | 5 | 545 | 2016-05-16 | | 9 | 3 | 201 | 2016-05-17 | +-----+---------+-------+------------+ 9 rows in set (0.00 sec)
统计 access_log 各个 site_id 的访问量:
SELECT site_id, SUM(access_log.count) AS nums FROM access_log GROUP BY site_id;执行以上 SQL 输出结果如下:
mysql> select site_id, sum(access_log.count) as nums -> from access_log group by site_id; +---------+------+ | site_id | nums | +---------+------+ | 1 | 275 | | 2 | 10 | | 3 | 521 | | 4 | 13 | | 5 | 750 | +---------+------+ 5 rows in set (0.00 sec)
现在我们想要查找每个送货员配送的订单数目。
下面的 SQL 语句统计所有网站的访问的记录数:
SELECT Websites.name,COUNT(access_log.aid) AS nums FROM access_log LEFT JOIN Websites ON access_log.site_id=Websites.id GROUP BY Websites.name;执行以上 SQL 输出结果如下:
mysql> select websites.name,count(access_log.aid) as nums from access_log -> left join websites -> on access_log.site_id = websites.id -> group by websites.name; +----------+------+ | name | nums | +----------+------+ | Facebook | 2 | | Google | 2 | | 微博 | 1 | | 淘宝 | 1 | | 芝麻教程 | 3 | +----------+------+ 5 rows in set (0.01 sec)